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QUANTITATIVE METHODS IN PSYCHOLOG)

Outliers and Influential Data Points in Regression Analysis *

James P. Stevens
University of Cincinnati

Because the resulls of a regression analysis can be quite sensitive to outliers {either
on y or in the space of the predictors), it is important to be able to detect such
points. This article discusses and interrelates the following four diagnostics that
are useful in identifying outliers: studentized residuals, the hat elements, Cook’s
distance, and Mahalanobis distance. Guidelines are given for interpretation of the
diagnostics. Outliers will not necessarily be influential in affecting the regression
coefhicients. This important fact is illustrated and emphasized.

An important area that has been treated
only briefly by regression texts that psychol-
ogists would typically use (Cohen & Cohen,
1975; Pedhazur, 1982) is that of outliers and
influential data points. Because of this lack of
research many applied investigators are un-
aware of how sensitive multiple regression (and
other mathematical maximization procedures
such as canonical correlation, discriminant
analysis, and principal components analysis)
can be to just | or 2 errant points. These points
can substantiatly affect the results and the sub-
sequent interpretation. It is certainly moot as
to whether 1 or 2 points should have such a
profound influence. Therefore, it is important
to be able to detect outliers and influential
points. There is a distinction hetween the two
because a point that is an outlier (either on y
or in the space of the predictors) will not nec-
essarily be influential in affecting the regression
equation. Examples are given later to illustrate
this concept.

Since the late 1970s, statisticians have given
much consideration to ‘“‘case analysis,” in
which various statistics are used to detect out-
liers and high influence points (Cook, 1977;
Hoaglin & Welsch, 1978). The importance of
exploring the data, rather than just examining
one or two summary statistics, has been em-
phasized by Tukey (1977) and many other
statisticians. Case analysis in regression is sim-
ply a reflection of this emphasis.
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archers will be using one or more of these
Hor their analyses.

There are two basic approaches that can be
used in dealing with outliers and influential
'points This report considers the approach of
I having an arsenal of tools for isolating these
important points for further study, with the
& possibility of deleting some or all of the points
from the analysis. The other approach is to
develop procedures that are relatively insen-
sitive to wild points (i.e., robust regression
techniques). Some pertinent references for ro-
k- bust regression are (Hogg, 1979; Huber, 1977;

b>Mosteller & Tukey, 1977). It is important to
e ote that even robust regression may be inef-
fecme when there are outliers in the space of
the predictors (Huber, 1977). Thus, even in
robust regression there is a need for case anal-
ysis. Also, a modification of robust regression,

Ecalled bounded-influence regression, has been
developed by Krasker and Welsch (1979),

The fact that a simple examination of sums«3
mary statistics can result in misleading inter-%
pretations was illustrated by Anscombe (1973),
He presented three data sets that yielded the;
same summary statistics (i.e., regression coef-4
ficients and same r? = .667). In one case linear}
regression was perfectly appropriate. In the
second case, however, a scatter plot showed§
that curvilinear regression was appropriate. In 3
the third case, linear regression was appro-%
priate for 10 of 11 points, but the other point 3
was an outlier and possibly should have bee
excluded from the analysis.

The need to consider the influence of each;
case on a simple correlation, through the use;
of influence curves, has been emphasized by}
Thissen, Baker, & Wainer (1981). This article3
extends the discussion to the multiple regres-3
sion context and considers and mterrelatcs
statistics useful in detecting errant pomts.

Data Editing

nfluential cases can occur because of
k l'ecordmg errors. Consequently, researchers
lhould give more consideration to the data
tditing phase of the data analysis process (i.e.,
llways listing the data and examining the llst
or possible errors). There are many possible
mrces of error from the initial data collection
lo the final keypunching. First, some of the
[data may have been recorded incorrectly. Sec-
fond, even if recorded correctly, when all of
These statistics include Cook’s distance (for# : g;;zt?;i g?::ﬁ;?gntt?o?;é;il:nsélli?gores
high influence points), the studentized reside ors may be made. Finally, even if no errors
uals (for outliers on y), and the Mahalanobis S 1 e i1 these first two st’eps an error could
distance and the diagonal elements of the hat Sy, -1 putting the data on cards or into
matrix X(X'X)~'X' (for outliers in the space of g, (o .

the predictors). These important diagnosticy ’ ’
statistics recently became available on widelyg
distributed statistical software packages: SAS'
(Barr, Goodnight, Sall, & Heboig, 1982), Bis$
MED (Dixon, 1981), and Statistical Pack:
for the Social Sciences (SPSS; Hull & N
1981). This study illustrates the use of these
statistics on some small data sets and gi
guidelines for their interpretation. Throughouly
the article, reference is made to three majo
statistical packages (BMDP, SPSS, and SASJ}
because, in practice, the vast majority of

: Graphical Diagnostic Procedures

me ways in which traditional graphical
ots can be quite useful are examined (cf.
aper & Smith, 1981, chap. 3 for an extended
ussion). Other ways in which plots are lim-
Elted are then considered. Plots can be a useful
vice for detecting outliers, especially when
i ¥ number of predictors is small, and for di-
gnosing various reasons for model failure (i.e.,
onlinearity, nonconstant variance). Univari-
distribution plots for each predictor will
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reveal at least some of the cases that may be
outliers in the space of the predictors. A his-
togram of the studentized residuals will reveal
which residuals split off from the rest and
therefore correspond to possible outliers on y
for those cases. Also, for the two-predictor case,
a scatter plot of x; versus x, will indicate which
points split off from the cluster of points in
the plane and therefore are multivariate out-
liers.

Plots of studentized residuals (r._, versus y;
and Xx; are useful. Equation 4 presents the for-
mula for the studentized residuals. These re-
siduals are essentially uncorrelated with y; and
x;. Therefore, if the model fit is satisfactory,
a plot of r_;, versus y; or x; will show a random
scattering of points about the line r_, = 0. A
systematic trend indicates model failure. For
example, if the points funnel in (or out) as x;
increases, this indicates nonconstant variance.
If the points have a curvilinear clustering when
plotting y; versus r.;, then nonlinearity is
present. See Weisberg (1980, chap. 6) for rem-
edies for these problems,

The use of these simple plots decreases as
the number of predictors increases. Multivar-
iate outliers in the space of the predictors can
then occur in more subtle ways. For example,
there might be fairly large differences on 3 of
5 predictors or moderate differences on 7 of
8 predictors, each of which produces a mul-
tivariate outlier. Also, the simple plots do not
indicate the extent to which deleting | or 2
points from the analysis will affect the regres-
sion coefficients or the standard errors. Ad-
ditionally, although the plots can vividly bring
possible outliers to one’s attention, these need
to be tested analytically to guard against overall
Type I errors. This is because chance is being
capitalized on in testing the cases with the
largest values. This is discussed in more detail
in the next section.

Belsley, Kuh, and Welsch (1980, p. 7) sum-
marized this discussion as follows:

Before performing a multiple regression, it is com-
mon practice to look at the univariate distribution
of each variate to see if any oddities {outliers or
gaps) strike the eye. Scatter diagrams are also ex-
amined. While there are clear benefits from sorting
out peculiar observations in this way, diagnostics
of this type can’t detect multivariate discrepant ob-
servations, nor can they tell us in what ways such
data influence the estimated model.
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Measuring Outliers
Studentized Residuals

The raw residuals (& = y; — J;) in linear
regression are assumed to be independent, to
lhave a mean of 0, to have a constant variance,
and to follow a normal distribution. However,
because the » residuals have only n — k degrees
of freedom (k degrees of freedom were lost in
estimating the regression parameters), they
cannot be independent. Also, the residuals
have different variances. It can be shown (cf.
Draper & Smith, 1981, p. 151) that the co-
variance matrix for the residuals is given by

Vie) = 5% — 1), (1

where H = X(X'X) 'X' is the hat matrix and
X is on nx(p + 1) matrix with Is in the first
column and the scores for the predictors in
the remaining columns. From Equation 1, it
is apparent that the variance for the ith residual
is given by

Set = &z(l - hil)s (2

where A;; is the jth diagonal element of 1. This
shows clearly that the extent to which the vari-
ances of the ¢; vary is a direct function of the
variability of the diagonal elements of the hat
matrix. Equation 2 is more iniportant in de-
scribing the role of the /; as influential points
in regression analysis.

In order to compare residuals directly, each
¢; is divided by its estimated standard devia-
tion. The resulting residual, r;, is the stan-
dardized residual.

Ve = /=, (3)

Because the r; is assumed to have a normal
distribution with a mean of 0 (if the model is
correct), then about 99% of the r; should lie
within 3 standard deviations of the mean.
Therefore, any r; with an absolute value greater
than 3 is an outlier and should be carefully
examined to explain why the fit was so poor.
The subjects corresponding to these points may
be quite different from the rest of the subjects
in some important ways.

It is necessary to distinguish between the
standardized residual and the studentized re-
sidual 7, which is defined as

é;

Ry = r—, @)
= g V1 — h,

Because the critical value is 3.53, this is not
a significant deviation.

Simply because a case has a larger outlier
on y does not necessarily mean the case will
be influential in affecting the regression coef-
ficients. An example is taken from Draper and
mith (1981, p. 169). In this example, there
are 19 data points and one predictor. The scat-
ter plot is presented in Figure 1. Attention
should be focused on the line labeled “Line
‘without point 2.” Inspection of Figure | reveals
that the case labeled 3 is an outlier, but it is
not influential because, being “outweighed”
by points at neighboring values, it cannot have
much effect on the values of the estimated
g coeficients of the model. The case labeled 1,
contrast, is an outlier on x and is an in-
fluential point. In fact, without Case [, the
fegression is not significant. This example is
e discussed in greater detail later. The reader
Emight generalize and erroneously conclude
fthat whenever an observation on the predictor
18 an outlier it will be influential. This is not
Enecessarily true. To determine whetlier an
outlier (either on y or on the set of predictors)
b is influential Cook’s measure of distance is
:used.

where d;.; is the standard error of y with the
ith case deleted. ;
By reexpressing r._;, the two residuals can
easily be related:
o0& g
" 3(,,-)&“ - h,’[ O(-i) ( )
Because of Equation 5, the studentized r
sidual will be a more sensitive outlier detector;3
it is therefore preferable. The studentized re- 3§
sidual is available in PROC REG (SAS, Barr3j
etal., 1982), whereas BMDPIR gives the sta
dardized residual.'
Weisberg (1980) has given the following £3
statistic for testing an outlier for significance::
N n—p—1 '(6\
L=\ T )
where ; is the standardized residual, »n is same}
ple size, p’ is the number of parameters (ing
cluding the regression constant), and df =3
n — p’ — 1. Although ¢ is not given on
printout from BIOMED, SPSS, OR SAS, 7]
is given by SAS and should be used in Equation}
6 instead of r,. Beckman and Trussel (1974)
have shown that 7._; is also distributed as a ]
statistic. :
Assessing the significance of the case with]
the largest value of 1; is equivalent to performe
ing 7 significance tests, one for each of the aj
cases. To control the resulting inflated Type [§
error rate, the somewhat conservative Bo
ferroni inequality is used, doing each test a{4
the o/n level of significance. Table 1 gives thq]
critical values (Weisberg, 1980) for various
and p’, which keeps overall & = .05.

Measures for Outliers in the Space
of the Predictors

Diagonal elements h;; of the hat matrix.
‘The h,s are one measure of the extent to which
. the ith observation is an outlier in the space
fof the predictors. The h;s are important be-
g.cause they can play a key role in determining
E(he predicted values for the subjects, Recall
Example t

Consider a regression analysis with 4 pres
dictors on 50 subjects; the largest r; = 2.8,
this a statistically significant deviation (overa
« = .05) according to the Weisberg test? -

n—p -1
L=Ern\ />3
n—p —r
S0-5—-1
=28\ /0 -5-78a

= 2.8(1.088) = 3.047.

f=(XX)'Xy and y=X§g.

erefore, y = X(X'X) 'X'y by simple substi-
tion.
Thus, the predicted values for y are obtained
by postmultiplying the hat matrix by the col-
=umn vector of observed scores on y. It can be
own that the A,s lie between 0 and 1, and
that the average value for /i, = p/n. From
uation 2, it may be seen that when A is
(ie., near 1), then the variance for
ith residual is near 0. This means that
- 5. In other words, an observation may
the linear model well and yet be an influen-
data point. This second diagnostic, then,
#flagging” observations that need to be ex-
Bamined carefullv because thev mav have an

' As of June 1983, BMDP2R has several new regr
diagnostics available, one of which is 1he sludentized
sidual (although il is called the jackknived residual
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unusually large influence on the regression
coeflicients.

What is a significant value for the 4,7 Hoag-
lin and Welsch (1978) suggest that 2p/n may
be considered large. Belsey et al. (1980, pp.
67-68) show that when the set of predictors
is multivariate normal, then (n — p)[h; — 1/
n)/(1 — h)(p — 1) is distributed as F with
(p — 1) and (n — p) degrees of freedom. Rough,
quick, approximate critical values (for a =
.05) are available to cover most situations. For
J<p<9and 25 <n— p<50,3p/ncan be
used, whereas for p > 10 and n — p > 50,
2p/n is appropriate.

An important point to remember concern-
ing the hat elements is that the points they
identify will not necessarily be influential in
affecting the regression coefficients. This does
not mean, however, that their identification
served no purpose for, as Draper and John
(1981) note, “even if they were not [influen-
tial], it would be useful to know that the points
were remote. For example, if additional ob-
servations were planned, such information
would clearly be helpful” (p. 25).

Andrews and Pregibon (1978) have pro-
posed a statistic (AP), which is a generalization
of /; for identifying whether a set of points is
remote in the space of the predictors. For one
point their statistic reduces to 1 — h;; thus,
a small value of the AP statistic corresponds
to a large value for h;. The use of the AP
statistic is discussed in Draper and John
(1981). The AP statistic is actually based on
earlier work by Wilks (1963), who used the
notion of the determinant of a matrix as the
multivariate measure of scatter. Wilks sug-
gested that a reasonable criterion for an outlier
is a point {, which, when omitted, would min-
imize the following ratio:

XX
IXX|

where |XX™"| is the determinant of XX with
the vector for case i deleted from X. Mini-
mizing R is, of course, equivalent to deleting
the point which has the greatest effect on the
multivariate dispersion. Wilks generalized
R_; to test whether a set of s points is remote
by considering the previous ratio of deter-
minants, in which the numerator involves de-
leting the vectors for the s cases from X'X.
Barnett and Lewis (1978) give critical values
for n = 2 throuch 5 nredictors for determininge

Ry =

P et
RO TE T 3
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Y sponding large D? = 20.58. If p = 20 and
120 - ® case 10 n = 200, then a large h; = 2p/n = .20 and
¢ the corresponding large D = 39.90.
(b° = 7.24)
110 A Measure for Influential Data Points
Group centroid Cook’s distance. Cook’s distance (CD,) is
100 | Y a measure of the change in the regression coef-
. . ficients that would occur if this case was omit-
. _ . ) Case § ted, thus revealing which cases are most in-
90 ) ine without Points 1 & X e (02 = s5.4g) fluential in affecting the regression equation.
. ° : It is affected by both the case being an outlier
8o * LT on y and on the set of the predictors. Cook’s
e distance is given by
90 100 110 120 130 140 150 ! €Dy = (6 — By XX — 60y
70 line without Point 2 E Figure 2. Plot of data for two-predictor example and Ma- ! -9 o
g Malanobis distances for outliers, : (p+ DMS., (10)
60 e where E(_i, is the vector of estimated regression
significant #;; value, from Equation 9 we can  coefficients with the ith data point deleted, p
fimmediately determine the corresponding sig-  is the number of predictors, and A, res 1S the
50 Enificant D2 value. For example, if p = 7 and  residual (error) variance for the full data set.
&Line without Point 1 ¢/ = 50, then a large h; = .42 and the corre- Removing the ith data point should keep
40
Table 2
ERaw Data and Mahalanobis Distances for Two Small Data Sets
2 x 1
30 P N— a— ; Case Y X, X, X, X, D}
. r. h.. e, Dy
Line without Regression coeffs, T7i "ii 1 476 111 68 17 81 0.30
Point 2 111.51, -1.18 -.753 .42 .508 10.604 2 457 92 46 28 67 1.55
rFoint 1 118.64, -1.76 -2.00 .42 3.583 10.604 3 540 90 50 19 83 1.47
Points 1 & 2 107.92, ~-.89 4 551 107 . 59 25 71 0.01
5 575 98 50 13 92 0.76
Figure 1. Regression lines and diagnostics for Mickey, Dunn, & Clark (1967) data. (A variation (42.30) on _6]' 232 :?g gg f(l) gO 5.48
I 101 0.47
data point | has been added.) 8 574 110 50 2 82 0.8
9 645 17 59 18 87 0.23
. ey 10 556 94 97 12 69 7.24
critical values (Barnett & Lewis, 1978) are It mlgh_t appear that 1hC_SC are YleldlnS som 11 634 130 57 16 97
given in Table 3 for 2 through 5 predictors. what different information. However, in g 12 637 118 51 19 78
An easily implemented graphical test for mul- eral, this is not so as seen in the follo :3 gg(z) l?zl; g‘: ;3 1(6)‘;
tivariate normality is available (Pi. Johnlson_ & (Weisberg, 1980, p. 104): 15 560 109 66 13 88
Wichern, 1982). The test involves plotting =1 wYC-l¥ . _ R mary statistics
; . . i= I+ X, - X))C'X; - X).
nobis distances against chi- i 561.70000 108.70000 60.00000
ordered Mahalano & 70.74846 17.73289 14.84737

square percentile points. The D2 can be ob-
tained from the BMDP9R.

Referring back to the example with 2 pre-
dictors and 1 = 10, if we assume multivariate
normality, then Case 6 (D = 5.48) is not
significantly separated from the rest of the data
at .05 level because the critical value equals
6.32. In contrast, Case 10 is significantly sep-
arated.

BMDP and SPSS give the Mahalanobis dis-
tance, whereas SAS gives the /;; (hat elenients).

If n is even moderately large (50 or more
then 1/n is very small. When the remaining
portion is multiplied by n — 1, the result i}

D? (Mahalanobis distance). In other words’g

for large n, D? is approximately proportion
to hy:
D,'2 ~ (n - l)h,,

Thus, with large n, either measure may b
used. Also, because this report previously ir
dicated what would correspond roughly to

[314.455
19.483

19.483
220.444

Vole. Boxed-in entries are the first data set and corresponding D}
urpredictor data set are: 10, 10.859; 13, 7.977; 6, 7.223; 2, 5.04.
2404,

Calculation of D? for Case 6:

D3 = (413, 6) [314.455 19

19.483 220,
5 = 0032 —.00029
~.00028 00456

. The 10 case numbers having the largest D;? for a
8, 14, 4.874; 7, 3.514: 5, 3.177; 3, 2.616; 8, 2.561;

.483] 413
44 6

= D2 = 5484
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B, close to £ unless the ith observation is an
outlier. A (1 — ) X 100% confidence ellipsoid
for 8 based on B is given by the set of all g*
such that

(B8* — HXX(B* - B)
(p+ 1) MS,,

example,

(p=5n=40,r,=4, h; =

space of the predictors, for example,

sFl=-ap+ ILN—p—1). (p=15n=40,r=2,
This ellipsoid is centered at §. h;=.7=CD;,> 1.).

Cook and Weisberg (1982, p. 118) indicate
that a ), of about 1, corresponding to distances
between 8 and 8-, beyond a 50% confidence
region, would generally be considered large.
Cook'’s distance can be written in an alternative
revealing form,

in the following:
(p = 3, n= 20, h,‘,‘ = .4,

2 i =25=CD;> ).

D, = .
| — h,‘,‘

—— 11

(rp+ 1" (an
where 7, is the standardized residual and /i; is
the hat element. Thus, Cook’s distance mea-
sures the joint (combined) influence on the

case being an outlier on v and in the space of

Example 1.

Table 3
Critical Values for an Outlier in a Multivariate Normal Sample as Judged by Mahalanobis D?

p=2 p=3 p=4 p=>5

n 5% 1% 5% 1% 5% 1% 5% 1%

5 317 3.19

6 4.00 4.11 4.14 4.16

7 471 4.95 5.01 5.10 5.12 5.14

8 5.32 5.70 5.77 5.97 6.01 6.09 6.11 6.12

9 5.85 6.37 6.43 6.76 6.80 6.97 7.01 7.08
10 6.32 6.97 7.01 7.47 7.50 779 7.82 7.98 -
12 7.10 8.00 7.99 8.70 8.67 9.20 9.19 9.57
14 7.74 8.84 8.78 9.71 9.61 10.37 10.29 10.90 5
16 8.27 9.54 9.44 10.56 10.39 11.36 11.20 12.02
18 8.73 10.15 10.00 11.28 11.06 12.20 11.96 12,98
20 9.13 10.67 10.49 11.91 11.63 12.93 12.62 13.81
25 9.94 11.73 11.48 13.18 12.78 14.40 13.94 15.47
30 10.58 12.54 12.24 14.14 13.67 15.51 14.95 16.73
35 11.10 13.20 12.85 14.92 14.37 16.40 15.75 17.73
40 11.53 13.74 13.36 15.56 14.96 17.13 16.41 18.55
45 11.90 14.20 13.80 16.10 15.46 17.74 16.97 19.24
50 12.23 14.60 14.18 16.56 15.89 18.27 17.45 19.83
100 14.22 16.95 16.45 19.26 18.43 21.30 20.26 2317
200 1599 18.94 18.42 21.47 20.59 23.72 22.59 25.82
500 18.12 21.22 20.75 23.95 23.06 26.37 25.21 28.62

n = number of observations; p = dimension.

Note. From Outliers in Statistica! Data by V. Barnett and T. Lewis, 1978, New York: Wiley. Copyright 1978 by Wiley,

Reprinted by permission of John Wiley & Sons, Ltd.

the predictors. A case may be influential be.
cause it is a significant outlier only on y, for

3= CD;> 1), 4

or because it is a significant outlier only in thc:‘i

Note, however, that a case may not be a sig-f 7
nificant outlier on either y or in the space of
the predictors, but may still be influential as

Let us consider an example 3
using data from Mickey, Dunn, and Clark73
(1967) which have n = 19 and one predictor. *
Points 1 and 3 are of particular interest from 3§
a diagnostic viewpoint. A variation is added '3

on Point 1 (i.e., [42, 57]), changing it to (42,
30) for illustrative purposes. This is Point 2
in Figure 1.
v~ When the regression analysis is run on their
orlgmal data (labeled “Line without Point 27"),
- k. Point 3 is clearly an outlier on y (r; = 2.82).
" However, it is not an influential data point
G: because h; = .057 and CD = .239. Data Point
. 1 is an outlier on x because D? = 10.604. This
§ D? exceeds the .05 critical value (8.73 for
® p=2, n=18) in Table 3. However, Cook’s
distance does not declare Point 1 as influential
because CD = .508 < 1. The reason for this
- is that Cook’s distance is influenced by the
2 point’s being an outlier on both y and on the
E: predlctor and Point 1 is definitely not an out-
B lieron y (r = —.753).
B As discussed previously, the regression
 equation went from being significant to not
Esignificant when Point 1 was deleted. Thus,
& this point is certainly influential, but Cook’s
distance indicates otherwise. Hence, the rule
& that CD; > | for a point to be influential should
t be used with some caution. As Cook and
. Weisberg (1982) note, “the ith case will be
called influential if CD; is large; the exact def-

k- ; inition of large will depend on the problem,

i but CD, > 1. usually provides a basis for
¢ comparison’ (p. 118).
. All three diagnostics detect the point (42,
30) as influential. Cook’s distance for this point
(3.583) is much larger than it was for the point
(42, 57). This is because the point is an outlier
on both x and y (r = 2.0).
Finally, observe that the regression coeffi-
cients change substantially when Point 2 is
deleted, from (118.64, —1.76) to (107.92,
.89). Because the Cook distance for Point 2
‘is very large (3.583), this is precisely what is
_expected, for CD; measures how much the
;coefﬁcients will change when the point is de-
leted.
.. Example 2. In the previous example a case
"was discussed where, when a single point is
- deleted, the regression coefficients may change
: considerably. The reader should be aware that
“there are also situations in which a group of
" cases is influential en bloc, but is not influential
f considered individually. Cook and Weisberg
1980) have given a block of 2 points (C and
. D) that operate in this way (see Figure 3). If
7 Point C or D is deleted, the regression line
“will change very little. However, if both are

OUTLIERS AND INFLUENTIAL DATA POINTS IN REGRESSION ANALYSIS
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Figure 3. A group of cases which is influential en bloc,
but not influential if considered individually. From “Char-
acterizations of an empmcal influence function for de-
tecting influential cases in regression™ by R. D. Cook and
S. Weisherg, 1980, Technometrics, 22, p. 498. Copyright
1980 by American Statistical Association. Reprinted by
permission.

deleted, the fitted regression line will be quite
different. Now consider the other block of
points, A and B. If A or B is deleted, the fitted
line will change; if both are deleted, the line
will stay about the same.

Discussion

Because the results of a regression analysis
may be seriously affected by just 1 or 2 errant
data points, it is crucial for the researcher to
isolate such points. The first source of errant
points is recording errors, which can be de-
tected by listing the data. Use of the Weisberg
test (with studentized residuals) will detect y
outliers, and the hat elements or the Mahal-
anobis distances will detect outliers in the space
of the predictors. Such outliers will not nec-
essarily be influential points. To determine
which outliers are influential, find those whose
Cook distances are > 1. Those points that are
flagged as influential by Cook’s distance need
to be examined carefully to determine whether
they should be deleted from the analysis. If
there is a reason to believe that these cases
arise from a process different from that for
the rest of the data, then the cases should be
deleted. For example, the failure of a mea-
suring instrument, a power failure, or the
occurrence of an unusual event (perhaps inex-
plicable) would be instances of a different
process.

If none of these appears to be the case, two
analyses—one with the influential cases in and
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one with these cases deleted—could be re-
ported to emphasize the impact of these few
points on the analysis.
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